注册
登录
论坛
搜索
全国城市地图
帮助
导航
默认风格
宝石蓝
fervor
jeans
uchome
fashion
greenwall
私人消息 (0)
公共消息 (0)
系统消息 (0)
好友消息 (0)
帖子消息 (0)
IT家园
»
免费资源
» 知码网教你怎样识别更高级的验证码(二)
返回列表
发帖
西空
发短消息
加为好友
西空
当前离线
UID
69412
帖子
229
精华
0
积分
457
阅读权限
30
在线时间
10 小时
注册时间
2011-10-27
最后登录
2013-7-31
家园秀才
帖子
229
积分
457
注册时间
2011-10-27
1
#
跳转到
»
倒序看帖
打印
字体大小:
t
T
发表于 2013-7-6 20:47
|
只看该作者
知码网教你怎样识别更高级的验证码(二)
一、常见的验证码的破解分析
这里PWNtcha项目中的资料为例分析,各种
验证码
、
远程答题
等的破解.(方法很多,仅仅从我个人乍看之下觉得可行的方法来分析)
1)Authimage
使用的反破解技巧:
1.不连续的点组成字符
2.有一定程度的倾斜
设计不好的地方:
1.通过纵横的直方图投影,可以找到字幕区域
2.通过Hough变换,适当的参数,可以找到近似的横线,可以做倾斜矫正
3.字符串的倾斜式面内的,没有太多的破解难度
4.字母宽度一定,大小一定
2)Clubic
使用的反破解技巧:
1.字符是手写体
设计不好的地方:
1.检测切割阶段没有任何技术含量,属于设计的比较丑的
2.只有数字,而且手写体变化不大
3.表面看起来对识别阶段有难度,仔细分析,发现几乎不用任何高级的训练识别算法,就
固定的招某些像素点是否有色彩就够了
3)linuxfr.org
使用的反破解技巧:
1.背景颜色块
2.前景的横线或矩形
设计不好的地方:
1.背景色是单一色块,有形状,通过Region-Growth区域增长来很容易把背景给去掉
2.前景色是标准的线条,色彩单一
3.字母无粘连
4.都是印刷体
4)Ourcolony
使用的反破解技巧:
1.设计的太低级,不屑于去评价
设计不好的地方:
1.这种验证码,设计的最丑,但还是能把菜鸟搞定,毕竟学计算机的少,搞这个破解的更少,正所谓隔行如隔山
5)LiveJournal
使用的反破解技巧:
1.这个设计略微好点,使用个随机噪音,而且作为前景
2.字母位置粗细都有变化
设计不好的地方:
1.字母没有粘连
2.噪音类型单一
3.通过在X轴的直方图投影,能准确分割字幕
4.然后在Y周作直方图投影,能准确定位高度
5.识别阶段,都是印刷体,简单地很
二、网上的一些高级验证码
1)ICQ
2)IMDb
3)MS MVPS
4)MVN Forum
这些类型是被很多人认为比较难得类型,分析一下可以发现,字符检测,定位和分割都不难。 唯一影响识别率的是IMDBb和MVPS这两类,字体变形略大。
总体来说,这些类型的破解也不难,很容易做到50%以上的识别率。
五、高级验证码的破解分析
时间关系,我简单介绍如何利用图像处理和模式识别技术,自动识别比较高级的验证码。
(以风头正劲的Google为例)
1)至少从目前的AI的发展程度看,没有简单的做法能自动处理各种不同的验证码,即使能力很强,那么系统自然也十分复杂强大。所以,要想在很简单的算法实现比较高级的验证码破解,必须分析不同验证码算法的特点:
作为一般的图像处理和计算机视觉,会考虑色彩,纹理,形状等直接的特征,同时也考虑直方图,灰度等统计特征,还考虑FFT,Wavelet等各种变换后的特征。但最终目标都是Dimension Reduction(降维)然后利于识别,不仅仅是速度的考虑。从图像的角度看,很多系统都考虑转换为灰度级甚者黑白图片。
Google的图片可以看出,颜色变化是虚晃一枪,不存在任何处理难度。难度是字体变形和字符粘连。
如果能成功的分割字符,那么后期识别无论是用SVM等分类算法,还是分析笔顺比划走向来硬识别,都相对好做。
2)图像处理和粘连分割
代码中的part1目录主要完成图像预处理和粘连字符分割
001:将图像从jpg等格式转换为位图便于处理
002:采用Fix/Adaptive的Threshold门限算法,将图片Bin-Value二值化。(可用003算法)
003:采用OSTU分水岭算法,将图片Bin-Value二值化。(更通用,大部分时候效果更好)
005:获取ROI感兴趣的区域。
006:Edge Trace边缘跟踪。
007:Edge Detection边界检测。
008:Thin细化去骨架。
009:做了一些Tidy整理。(这个一般要根据特定的Captcha算法调整)
010:做切割,注意图片中红色的交叉点。
011:将边缘检测和骨干交叉点监测的图像合并。(合并过程可以做分析: 比如X坐标偏移门限分析,交叉点区域纹理分析,线条走势分析,等等各种方法,找出更可能的切分点和分离后部件的组合管理。)
代码:(代码质量不高,从其他项目拷贝过来,简单修改的。)
查看代码(./pstzine_09_01.txt)
注:在这里,我们可以看到,基本的部件(字母是分割开了,但可以造成统一字母的被切割成多个Component。 一种做法是:利用先验知识,做分割; 另外一种做法是,和第二部分的识别结合起来。 比如按照从左至右,尝试增加component来识别,如果不能识别而且component的总宽度,总面积还比较小,继续增加。 当然不排除拒识的可能性。)
3)字符部件组合和识别。
part2的代码展示了切割后的字母组合,和基于svm的字符识别的训练和识别过程。
Detection.cpp中展示了ImageSpam检测过程中的一些字符分割和组合,layout的分析和利用的简单技术。 而Google的验证码的识别,完全可以不用到,仅做参考。
SVM及使用:
本质上,SVM是一个分类器,原始的SVM是一个两类分类的分类器。可以通过1:1或者1:n的方式来组合成一个多类分类的分类器。 天生通过核函数的使用支持高维数据的分类。从几何意义上讲,就是找到最能表示类别特征的那些向量(支持向量SV),然后找到一条线,能最大化分类的Margin。
libSVM是一个不错的实现。
训练间断和识别阶段的数据整理和归一化是一样的。这里的简单做法是:
首先:
#define SVM_MAX +0.999
#define SVM_MIN +0.001
其次:
扫描黑白待识别字幕图片的每个像素,如果为0(黑色,是字母上的像素),那么svm中该位置就SVM_MAX,反之则反。
最后:
训练阶段,在svm的input的前面,为该类打上标记,即是那一个字母。
识别阶段,当然这个类别标记是SVM分类出来。
注意:
如果是SVM菜鸟,最好找一个在SVM外边做了包装的工具,比如样本选择,交叉验证,核函数选择这些,让程序自动选择和分析。
代码:通过ReginGrowth来提取单个单个的字符,然后开始识别。
查看代码(./pstzine_09_02.txt)
三、对验证码设计的一些建议
1.在噪音等类型的使用上,尽力让字符和用来混淆的前景和背景不容易区分。尽力让坏人(噪音)长得和好人(字母)一样。
2.特别好的验证码的设计,要尽力发挥人类擅长而AI算法不擅长的。 比如粘连字符的分割和手写体(通过印刷体做特别的变形也可以)。 而不要一味的去加一些看起来比较复杂的噪音或者其他的花哨的东西。即使你做的足够复杂,但如果人也难识别,显然别人认为你是没事找抽型的。
3. 从专业的机器视觉的角度说,验证码的设计,一定要让破解者在识别阶段,反复在低阶视觉和高阶视觉之间多反复几次才能识别出来。 这样可以大大降低破解难度和破解的准确率。
郑重申明一下:
1.这个问题,本身是人工智能,计算机视觉,模式识别领域的一个难题。作为破解者来说,是出于劣势地位。要做的很好,是很难得。总体来说,我走的是比较学院派的线路,能真正的破解难度比较高的验证码,不同于网上很多不太入流的破解方法。我能做的只有利用有限的知识,抛砖引玉而已。很多OCR的技术,特别是离线手写体中文等文字识别的技术,个人了解有限的很,都不敢在这里乱写。
本文摘自:
http://www.zhima365.com/shownews.php?id=420
收藏
分享
www.mxde.com密西下载,密西软件,密西游戏,单机游戏,软件官方下载,游戏下载,常用软件,破解软件,游戏修改器,汉化软件,游戏补丁
返回列表
Linux Unix
音乐天地
心情驿站
E书专区
供求信息
家园茶馆
精品软件下载
文学世界
DIY交流区
高清MTV
[收藏此主题]
[关注此主题的新回复]
[通过 QQ、MSN 分享给朋友]